European seabass

Dicentrachus labrax

Dicentrachus labrax (European seabass)
Taxonomy
    • Osteichthyes
      • Perciformes
        • Moronidae
          • Dicentrachus labrax
Distribution
Distribution map: Dicentrachus labrax (European seabass)

Information


Authors: João L. Saraiva, Jenny Volstorf
Version: 2.0 (2022-01-22)

Cite

Reviewer: Pablo Arechavala-Lopez
Editor: Billo Heinzpeter Studer

Cite as: »Saraiva, João L., and Jenny Volstorf. 2022. Dicentrachus labrax (Farm: Short Profile). In: FishEthoBase, ed. Fish Ethology and Welfare Group. World Wide Web electronic publication. First published 2017-03-09. Version 2.0. https://fishethobase.net.«





FishEthoScore/farm

Dicentrachus labrax
LiPoCe
Criteria
Home range
Depth range
Migration
Reproduction
Aggregation
Aggression
Substrate
Stress
Malformations
Slaughter


Condensed assessment of the species' likelihood and potential for good fish welfare in aquaculture, based on ethological findings for 10 crucial criteria.

Li = Likelihood that the individuals of the species experience good welfare under minimal farming conditions
Po = Potential of the individuals of the species to experience good welfare under high-standard farming conditions
Ce = Certainty of our findings in Likelihood and Potential

FishEthoScore = Sum of criteria scoring "High" (max. 10)

Legend

High
Medium
Low
Unclear
No findings



General remarks

Dicentrarchus labrax is a valuable species for aquaculture. However many aspects of its biology are not taken into consideration in farming conditions, especially in intensive culture. Despite recent advances in nutrition, there is still dependence on unsustainable feed sources such as fish meal and oil. Many behavioural aspects are yet to be fully understood, namely on reproduction, where courtship processes are unknown and spawning has largely to be artificially induced. Spatial needs are also an issue, since farming conditions are generally too restrictive of natural movement. This species is known to be highly sensible to stressors at all life stages, although good practices can greatly reduce stress effects. A proper culture system, providing shelter and substrate, reducing densities based on natural numbers and increasing space are measures that should contribute to better farming practices.




1  Home range

Many species traverse in a limited horizontal space (even if just for a certain period of time per year); the home range may be described as a species' understanding of its environment (i.e., its cognitive map) for the most important resources it needs access to. What is the probability of providing the species' whole home range in captivity?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a high amount of evidence.

Likelihood
Potential
Certainty

LARVAE: WILD: planktonic 1 2 3: horizontal movement limited to hydrodynamic displacement. FARM: hatcheries: 1-10 m2 4.

JUVENILES: WILD: home range 1-160 km 5 3 6 7 8, site fidelity at an ecosystem scale 8 7. FARM: net cages: 10 m2 9; raceways: 280 m2 10; earth ponds: 1000-10,000 m2 4

ADULTS JUVENILES

SPAWNERSWILD: swim tens to hundreds of km along the shore 51112. FARM: spawning tanks: usually ca 4 m diameter 13

 




2  Depth range

Given the availability of resources (food, shelter) or the need to avoid predators, species spend their time within a certain depth range. What is the probability of providing the species' whole depth range in captivity?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

LARVAE: WILD: usually 0-15 m 214. FARM: Hatchery: 1-2 m 13 15.

JUVENILES: WILD: usually 1-3 m 16 17 18, up to 60 m 6. FARMSea cages: 10-30 m 19 20; tanks: 1.75 m 21; earth ponds: 1.5-2 m 15; raceways: 1 m 10.

ADULTS: ➝ JUVENILES

SPAWNERSWILD: up to 60 m 6. FARM: pawning tanks: 1.5 m 13.

 




3  Migration

Some species undergo seasonal changes of environments for different purposes (feeding, spawning, etc.) and with them, environmental parameters (photoperiod, temperature, salinity) may change, too. What is the probability of providing farming conditions that are compatible with the migrating or habitat-changing behaviour of the species?

It is low for minimal and high-standard farming conditions. Our conclusion is based on a high amount of evidence.

Likelihood
Potential
Certainty

ANADROMOUS: Migrate from the sea into estuaries or lagoons at post-larvae stage 22 23 24 25.

LARVAEWILD: develop offshore, migrate inshore at post-larvae 22 23 24 25FARM: tanks 4 9. For details of holding systems ➝ crit. 1 and 2.

JUVENILES: WILDRemain mostly inshore, in estuaries, lagoons, or boardering rivers 26 27 25FARM: net cages 9, raceways 10, earth ponds 4For details of holding systems ➝ crit. 1 and 2.

ADULTS: WILD: coastal waters, except for offshore spawning migration 11 24.  FARM JUVENILES

SPAWNERSWILD: Migrate offshore to spawn 11 28 12FARM: spawning tanks. For details of holding systems ➝ crit. 1 and 2.




4  Reproduction

A species reproduces at a certain age, season, and sex ratio and possibly involving courtship rituals. What is the probability of the species reproducing naturally in captivity without manipulation?

It is low for minimal farming conditions. It is high for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

WILD: no data found yet. FARM: reproduction is impaired in common farming conditions 29 30 31 32. Temperature and PHOTOPERIOD manipulation are often used to induce spawning 33. Hormone treatments with luteinizing-releasing hormone / gonadotrophin-releasing hormone agonists are common to induce spawning in females 33 30 and milt production in males 34.  Males and females may occasionally be stripped 9. Reproductive dysfunction is common in farmed broodstock 29 30 31 32However natural spawning is possible 15. Females produced eggs of better quality when acclimatized for 3 years to a large tank and left undisturbed during the spawning season 30.




5  Aggregation

Species differ in the way they co-exist with conspecifics or other species from being solitary to aggregating unstructured, casually roaming in shoals or closely coordinating in schools of varying densities. What is the probability of providing farming conditions that are compatible with the aggregation behaviour of the species?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

Eggs: WILD: 13 eggs/m2 (Thompson and Harrop 1987) 2 offshore.  FARM: 300,000 eggs/m9.

LARVAE: WILD: 1 larvae/m2 offshore 2, but post-larvae may congregate naturally in large numbers 14 35 36 . FARM: from 1000 larvae/m3 (extensive rearing)(DIvanach 2000) to 300,000 eggs/m3 (hyper-intensive rearing) 9(DIvanach 2000).

JUVENILESWILD: groups of more than 500 individuals 14 16 37 38 39. FARM: grow-out tanks: 20-35 kg/m³ (ca 45-78 fish/m3 at harvest weight of 450 g) 9; Sea cages: 16 kg/m3 (ca 36 individuals/m3 at harvest weight of 450 g) 40. Stressed by high stocking densities 41 42, but stress decreases with good maintenance conditions 42 19.

ADULTS: WILDno data found yet. FARM1 kg/m3 in large earthen ponds (ca 1 individual/m3 ), and up to 5 kg/m3 in smaller plastic or concrete tanks (ca 5 individuals/m313.




6  Aggression

There is a range of adverse reactions in species, spanning from being relatively indifferent towards others to defending valuable resources (e.g., food, territory, mates) to actively attacking opponents. What is the probability of the species being non-aggressive and non-territorial in captivity?

There are unclear findings for minimal farming conditions. It is high for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

LARVAE: no aggression reported 15.

JUVENILES: not aggressive when reared in groups 43 44 45 nor in dyadic encounters 46.

ADULTS: ➝ JUVENILES.

SPAWNERS: no aggression reported 15.




7  Substrate

Depending on where in the water column the species lives, it differs in interacting with or relying on various substrates for feeding or covering purposes (e.g., plants, rocks and stones, sand and mud). What is the probability of providing the species' substrate and shelter needs in captivity?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

Eggs: WILD: pelagic 47 23 14 48:  Independent of bottom substrate. FARM: barren tanks 13

LARVAE Eggs

JUVENILESWILD: use substrate for feeding 14FARM: substrate absent in net cages 9and raceways 10 but present in earth ponds 4LAB: actively seeks shelter, especially shy individuals 49 50 45

ADULTS:  JUVENILES:

SPAWNERSno data found yet




8  Stress

Farming involves subjecting the species to diverse procedures (e.g., handling, air exposure, short-term confinement, short-term crowding, transport), sudden parameter changes or repeated disturbances (e.g., husbandry, size-grading). What is the probability of the species not being stressed?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a high amount of evidence.

Likelihood
Potential
Certainty

LARVAE: sensitive to external stressors at very early stages 51.

JUVENILES: stressed by confinement 52, tank cleaning and sudden temperature changes 53. For stress and stocking density  crit. 5.

ADULTS:  JUVENILES.

SPAWNERS: for stress and reproduction crit. 4.




9  Malformations

Deformities that – in contrast to diseases – are commonly irreversible may indicate sub-optimal rearing conditions (e.g., mechanical stress during hatching and rearing, environmental factors unless mentioned in crit. 3, aquatic pollutants, nutritional deficiencies) or a general incompatibility of the species with being farmed. What is the probability of the species being malformed rarely?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a high amount of evidence.

Likelihood
Potential
Certainty

LARVAE: WILDno data found yet. FARM: spinal malformations in 5-24% of individuals 54 55 56, mouth deformations in 4% of individuals 54, operculum abnormalities in up to 90% of individuals 54, fin anomalies in 10-22% of individuals 57.

JUVENILES: WILD: no malformations found 57. FARM: kyphosis (25-53%) 58, operculum (15%) and head (6%) abnormalities 59; overall up to ca 30% in normal rearing conditions 59; higher than other species such as sea bream (>10 %) 60, catfish (5 %) or tilapia (<3 %) 61

ADULTS JUVENILES




10  Slaughter

The cornerstone for a humane treatment is that slaughter a) immediately follows stunning (i.e., while the individual is unconscious), b) happens according to a clear and reproducible set of instructions verified under farming conditions, and c) avoids pain, suffering, and distress. What is the probability of the species being slaughtered according to a humane slaughter protocol?

It is low for minimal farming conditions. It is high for high-standard farming conditions. Our conclusion is based on a high amount of evidence.

Likelihood
Potential
Certainty

Common and high-standard slaughter method: a protocol for electrical stunning followed by killing immersion in icewater is available. Stunning after 10 s (3.3 Arms/dm2, sinusoidal 50Hz or pulsed square wave AC, 133 Hz, 43% duty cycle) followed by placement in icewater for 10 min was mostly effective 62 63 and consistent with current guidelines 64.




11  Side note: Domestication

Teletchea and Fontaine introduced 5 domestication levels illustrating how far species are from having their life cycle closed in captivity without wild input, how long they have been reared in captivity, and whether breeding programmes are in place. What is the species’ domestication level?

DOMESTICATION LEVEL 5 65, fully domesticated.




12  Side note: Forage fish in the feed

450-1,000 milliard wild-caught fishes end up being processed into fish meal and fish oil each year which contributes to overfishing and represents enormous suffering. There is a broad range of feeding types within species reared in captivity. To what degree may fish meal and fish oil based on forage fish be replaced by non-forage fishery components (e.g., poultry blood meal) or sustainable sources (e.g., soybean cake)?

All age classes: WILD: Carnivorous 14. FARM: for JUVENILES and ADULTS Fish feed and oil may be partly* 66 67 68 or mostly* 69 replaced with plant material.

*partly = <51% – mostly = 51-99% – completely = 100%




Glossary


LARVAE = hatching to mouth opening, for details Findings 10.1 Ontogenetic development
WILD = setting in the wild
FARM = setting in farm environment
JUVENILES = fully developed but immature individuals, for details Findings 10.1 Ontogenetic development
ADULTS = mature individuals, for details Findings 10.1 Ontogenetic development
SPAWNERS = adults that are kept as broodstock
ANADROMOUS = migrating from the sea into fresh water to spawn
PHOTOPERIOD = duration of daylight
LAB = setting in laboratory environment
DOMESTICATION LEVEL 5 = selective breeding programmes are used focusing on specific goals 65



Bibliography


[1] Sabriye, A. S., P. J. Reay, and S. H. Coombs. 1988. Sea-bass larvae in coastal and estuarine plankton. Journal of Fish Biology 33: 231–233. https://doi.org/10.1111/j.1095-8649.1988.tb05580.x.
[2] Jennings, S., and M. G. Pawson. 1992. The origin and recruitment of bass, Dicentrarchus labrax, larvae to nursery areas. Journal of the Marine Biological Association of the United Kingdom 72: 199. https://doi.org/10.1017/S0025315400048888.
[3] Pickett, G.D, D.F Kelley, and M.G Pawson. 2004. The patterns of recruitment of sea bass, Dicentrarchus labrax L. from nursery areas in England and Wales and implications for fisheries management. Fisheries Research 68: 329–342. https://doi.org/10.1016/j.fishres.2003.11.013.
[4] Hussenot, Jérôme M.E. 2003. Emerging effluent management strategies in marine fish-culture farms located in European coastal wetlands. Aquaculture 226: 113–128. https://doi.org/10.1016/S0044-8486(03)00472-1.
[5] Holden, M. J., and T. Williams. 1974. The Biology, Movements and Population Dynamics of Bass, Dicentrarchus Labrax, in English Waters. Journal of the Marine Biological Association of the United Kingdom 54: 91. https://doi.org/10.1017/S0025315400022098.
[6] Quayle, V.A., D. Righton, S. Hetherington, and G. Pickett. 2009. Observations of the Behaviour of European Sea Bass (Dicentrarchus labrax) in the North Sea. In Tagging and Tracking of Marine Animals with Electronic Devices, ed. Jennifer L. Nielsen, Haritz Arrizabalaga, Nuno Fragoso, Alistair Hobday, Molly Lutcavage, and John Sibert, 9:103–119. Dordrecht: Springer Netherlands.
[7] Arechavala-Lopez, P., I. Uglem, D. Fernandez-Jover, J. T. Bayle-Sempere, and P. Sanchez-Jerez. 2011. Immediate post-escape behaviour of farmed seabass (Dicentrarchus labrax L.) in the Mediterranean Sea. Journal of Applied Ichthyology 27: 1375–1378. https://doi.org/10.1111/j.1439-0426.2011.01786.x.
[8] Green, Benjamin C., David J. Smith, Jonathan Grey, and Graham J. C. Underwood. 2012. High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach. Oecologia 168: 245–255. https://doi.org/10.1007/s00442-011-2077-y.
[9] Bagni, M. 2005. Cultured Aquatic Species Information Programme. Dicentrarchus labrax. Rome: FAO Fisheries and Aquaculture Department.
[10] Jerbi, M.A., J. Aubin, K. Garnaoui, L. Achour, and A. Kacem. 2012. Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquacultural Engineering 46: 1–9. https://doi.org/10.1016/j.aquaeng.2011.10.001.
[11] Pawson, M. G., G. D. Pickett, and D. F. Kelley. 1987. The distribution and migrations of bass, Dicentrarchus labrax L., in waters around England and Wales as shown by tagging. Journal of the Marine Biological Association of the United Kingdom 67: 183. https://doi.org/10.1017/S0025315400026448.
[12] Pawson, M. G., G. D. Pickett, J. Leballeur, M. Brown, and M. Fritsch. 2006. Migrations, fishery interactions, and management units of sea bass (Dicentrarchus labrax) in Northwest Europe. ICES Journal of Marine Science 64: 332–345. https://doi.org/10.1093/icesjms/fsl035.
[13] Moretti, Alessandro, Mario Pedini Fernandez-Criado, Giancarlo Cittolin, and Ruggero Guidastri. 1999. Manual on Hatchery Production of Seabass and Gilthead Seabream. Vol. 1. Rome: Food and Agriculture Organization of the United Nations.
[14] Pickett, Graham D, and Michael G Pawson. 1994. Sea Bass: Biology. Vol. 12. Springer Science & Business Media.
[15] Mylonas, Constantinos C. 2017. Personal communicationEMail.
[16] Bégout Anras, M-L, J-P Lagardére, and J-Y Lafaye. 1997. Diel activity rhythm of seabass tracked in a natural environment: group effects on swimming patterns and amplitudes. Canadian Journal of Fisheries and Aquatic Sciences 54: 162–168. https://doi.org/10.1139/f96-253.
[17] Brehmer, Patrice, Thang Do Chi, and David Mouillot. 2006. Amphidromous fish school migration revealed by combining fixed sonar monitoring (horizontal beaming) with fishing data. Journal of Experimental Marine Biology and Ecology 334: 139–150. https://doi.org/10.1016/j.jembe.2006.01.017.
[18] Benhaïm, David, Samuel Péan, Gaël Lucas, Nancy Blanc, Béatrice Chatain, and Marie-Laure Bégout. 2012. Early life behavioural differences in wild caught and domesticated sea bass (Dicentrarchus labrax). Applied Animal Behaviour Science 141: 79–90. https://doi.org/10.1016/j.applanim.2012.07.002.
[19] Maricchiolo, Giulia, Simone Mirto, Gabriella Caruso, Tiziana Caruso, Rosa Bonaventura, Monica Celi, Valeria Matranga, and Lucrezia Genovese. 2011. Welfare status of cage farmed European sea bass (Dicentrarchus labrax): A comparison between submerged and surface cages. Aquaculture 314: 173–181. https://doi.org/10.1016/j.aquaculture.2011.02.001.
[20] Karakassis, I. 2000. Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES Journal of Marine Science 57: 1462–1471. https://doi.org/10.1006/jmsc.2000.0925.
[21] MacPherson, N., G Citollin, H. Cook, and S. Besikepe. 1988. The farming of sea bass, sea bream and shrimp in Iskenderun Bay - An Assessment of Technical and Economic Feasibility.
[22] Dando, P. R., and Necla Demir. 1985. On the Spawning and Nursery Grounds of Bass, Dicentrarchus Labrax, in the Plymouth Area. Journal of the Marine Biological Association of the United Kingdom 65: 159–168. https://doi.org/10.1017/S0025315400060872.
[23] Thompson, Brenda M., and Ruth T. Harrop. 1987. The distribution and abundance of bass (Dicentrarchus labrax) eggs and larvae in the English Channel and Southern North Sea. Journal of the Marine Biological Association of the United Kingdom 67: 263–274. https://doi.org/10.1017/S0025315400026588.
[24] Naciri, M. 1999. Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). Journal of Heredity 90: 591–596. https://doi.org/10.1093/jhered/90.6.591.
[25] Martinho, F., R. Leitão, J. M. Neto, H. Cabral, F. Lagardère, and M. A. Pardal. 2008. Estuarine colonization, population structure and nursery functioning for 0-group sea bass (Dicentrarchus labrax), flounder (Platichthys flesus) and sole (Solea solea) in a mesotidal temperate estuary. Journal of Applied Ichthyology 24: 229–237. https://doi.org/10.1111/j.1439-0426.2007.01049.x.
[26] Kelley, D. F. 1988. The importance of estuaries for sea-bass, Dicentrarchus labrax (L.). Journal of Fish Biology 33: 25–33. https://doi.org/10.1111/j.1095-8649.1988.tb05555.x.
[27] Martinho, Filipe, R. Leitão, J. M. Neto, H. N. Cabral, J. C. Marques, and M. A. Pardal. 2007. The use of nursery areas by juvenile fish in a temperate estuary, Portugal. Hydrobiologia 587: 281–290. https://doi.org/10.1007/s10750-007-0689-3.
[28] Pawson, M.G., and G.D. Pickett. 1996. The Annual Pattern of Condition and Maturity in Bass, Dicentrarchus Labrax, in Waters Around England and Wales. Journal of the Marine Biological Association of the United Kingdom 76: 107. https://doi.org/10.1017/S0025315400029040.
[29] Mylonas, Constantinos C., and Yonathan Zohar. 2000. Use of GnRHa-delivery systems for the control of reproduction in fish. Reviews in Fish Biology and Fisheries 10: 463–491. https://doi.org/10.1023/A:1012279814708.
[30] Forniés, M.A, E Mañanós, M Carrillo, A Rocha, S Laureau, C.C Mylonas, Y Zohar, and S Zanuy. 2001. Spawning induction of individual European sea bass females (Dicentrarchus labrax) using different GnRHa-delivery systems. Aquaculture 202: 221–234. https://doi.org/10.1016/S0044-8486(01)00773-6.
[31] Zanuy, Silvia, Manuel Carrillo, Alicia Felip, Lucinda Rodrı́guez, Mercedes Blázquez, Jesús Ramos, and Francesc Piferrer. 2001. Genetic, hormonal and environmental approaches for the control of reproduction in the European sea bass (Dicentrarchus labrax L.). Aquaculture 202: 187–203. https://doi.org/10.1016/S0044-8486(01)00771-2.
[32] Zohar, Yonathan, and Constantinos C Mylonas. 2001. Endocrine manipulations of spawning in cultured fish: from hormones to genes. Aquaculture 197: 99–136. https://doi.org/10.1016/S0044-8486(01)00584-1.
[33] Buke, Ergun. 2002. Sea bass (Dicentrarchus labrax L., 1781) seed production. Turkish Journal of Fisheries and Aquatic Science 2: 61–70.
[34] Rainis, Simona, Constantinos C Mylonas, Yiannos Kyriakou, and Pascal Divanach. 2003. Enhancement of spermiation in European sea bass (Dicentrarchus labrax) at the end of the reproductive season using GnRHa implants. Aquaculture 219: 873–890. https://doi.org/10.1016/S0044-8486(03)00028-0.
[35] Kennedy, Michael, and Patrick Fitzmaurice. 1972. The Biology of the Bass, Dicentrarchus Labrax, in Irish Waters. Journal of the Marine Biological Association of the United Kingdom 52: 557. https://doi.org/10.1017/S0025315400021597.
[36] Heath, M.R. 1992. Field Investigations of the Early Life Stages of Marine Fish. In Advances in Marine Biology, 28:1–174. Elsevier.
[37] Malavasi, S., V. Georgalas, M. Lugli, P. Torricelli, and D. Mainardi. 2004. Differences in the pattern of antipredator behaviour between hatchery-reared and wild European sea bass juveniles. Journal of Fish Biology 65: 143–155. https://doi.org/10.1111/j.0022-1112.2004.00545.x.
[38] Benhaïm, David, Marie-Laure Bégout, Gaël Lucas, and Béatrice Chatain. 2013. First Insight into Exploration and Cognition in Wild Caught and Domesticated Sea Bass ( Dicentrarchus labrax ) in a Maze. PLOS ONE 8: e65872. https://doi.org/10.1371/journal.pone.0065872.
[39] Benhaïm, David, Sébastien Ferrari, Béatrice Chatain, and Marie-Laure Bégout. 2016. The shy prefer familiar congeners. Behavioural Processes 126: 113–120. https://doi.org/10.1016/j.beproc.2016.03.008.
[40] Papoutsoglou, S, M J Costello, E Stamou, and G Tziha. 1996. Environmental conditions at sea-cages, and ectoparasites on farmed European sea-bass, Dicentrarchus labrax (L.), and gilt-head sea-bream, Sparus aurata L., at two farms in Greece. Aquaculture Research 27: 25–34. https://doi.org/10.1111/j.1365-2109.1996.tb00963.x.
[41] Di Marco, P., A. Priori, M.G. Finoia, A. Massari, A. Mandich, and G. Marino. 2008. Physiological responses of European sea bass Dicentrarchus labrax to different stocking densities and acute stress challenge. Aquaculture 275: 319–328. https://doi.org/10.1016/j.aquaculture.2007.12.012.
[42] Lupatsch, I., G.A. Santos, J.W. Schrama, and J.A.J. Verreth. 2010. Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax. Aquaculture 298: 245–250. https://doi.org/10.1016/j.aquaculture.2009.11.007.
[43] NOT FOUND
[44] Sammouth, Sophie, Emmanuelle Roque d’Orbcastel, Eric Gasset, Gilles Lemarié, Gilles Breuil, Giovanna Marino, Jean-Luc Coeurdacier, Sveinung Fivelstad, and Jean-Paul Blancheton. 2009. The effect of density on sea bass (Dicentrarchus labrax) performance in a tank-based recirculating system. Aquacultural Engineering 40: 72–78. https://doi.org/10.1016/j.aquaeng.2008.11.004.
[45] Ferrari, Sébastien, David Benhaïm, Tatiana Colchen, Béatrice Chatain, and Marie-Laure Bégout. 2014. First links between self-feeding behaviour and personality traits in European seabass, Dicentrarchus labrax. Applied Animal Behaviour Science 161: 131–141. https://doi.org/10.1016/j.applanim.2014.09.019.
[46] Ferrari, Sébastien, Sandie Millot, Didier Leguay, Béatrice Chatain, and Marie-Laure Bégout. 2015. Consistency in European seabass coping styles: A life-history approach. Applied Animal Behaviour Science 167: 74–88. https://doi.org/10.1016/j.applanim.2015.03.006.
[47] Jackman, L. A. J. 1954. The early development stages of the Bass, Morone labrax (L.). Proceedings of the Zoological Society of London 124: 531–534. https://doi.org/10.1111/j.1469-7998.1954.tb07795.x.
[48] Leis, Jeffrey M. 2006. Are Larvae of Demersal Fishes Plankton or Nekton? In Advances in Marine Biology, 51:57–141. Elsevier.
[49] Millot, S., M.-L. Bégout, and B. Chatain. 2009. Risk-taking behaviour variation over time in sea bass Dicentrarchus labrax: effects of day–night alternation, fish phenotypic characteristics and selection for growth. Journal of Fish Biology 75: 1733–1749. https://doi.org/10.1111/j.1095-8649.2009.02425.x.
[50] Killen, Shaun S., Stefano Marras, and David J. McKenzie. 2011. Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. Journal of Animal Ecology 80: 1024–1033. https://doi.org/10.1111/j.1365-2656.2011.01844.x.
[51] Pavlidis, M., E. Karantzali, E. Fanouraki, C. Barsakis, S. Kollias, and N. Papandroulakis. 2011. Onset of the primary stress in European sea bass Dicentrarhus labrax, as indicated by whole body cortisol in relation to glucocorticoid receptor during early development. Aquaculture 315: 125–130. https://doi.org/10.1016/j.aquaculture.2010.09.013.
[52] Vazzana, M, M Cammarata, E.L Cooper, and N Parrinello. 2002. Confinement stress in sea bass (Dicentrarchus labrax) depresses peritoneal leukocyte cytotoxicity. Aquaculture 210: 231–243. https://doi.org/10.1016/S0044-8486(01)00818-3.
[53] Varsamos, S., G. Flik, J.F. Pepin, S.E. Wendelaar Bonga, and G. Breuil. 2006. Husbandry stress during early life stages affects the stress response and health status of juvenile sea bass, Dicentrarchus labrax. Fish & Shellfish Immunology 20: 83–96. https://doi.org/10.1016/j.fsi.2005.04.005.
[54] Barahona-Fernandes, M. H. 1982. Body deformation in hatchery reared European sea bass Dicentrarchus labrax (L). Types, prevalence and effect on fish survival. Journal of Fish Biology 21: 239–249. https://doi.org/10.1111/j.1095-8649.1982.tb02830.x.
[55] Infante, Jose L. Zambonino, Chantal L. Cahu, and Armande Peres. 1997. Partial Substitution of Di- and Tripeptides for Native Proteins in Sea Bass Diet Improves Dicentrarchus labrax Larval Development. The Journal of Nutrition 127: 608–614.
[56] Cahu, C.L, J.L Zambonino Infante, P Quazuguel, and M.M Le Gall. 1999. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture 171: 109–119. https://doi.org/10.1016/S0044-8486(98)00428-1.
[57] Marino, G., C. Boglione, B. Bertolini, A. Rossi, F. Ferreri, and S. Cataudella. 1993. Observations on development and anomalies in the appendicular skeleton of sea bass, Dicentrarchus labrax L. 1758, larvae and juveniles. Aquaculture Research 24: 445–456. https://doi.org/10.1111/j.1365-2109.1993.tb00568.x.
[58] Koumoundouros, G, E Maingot, P Divanach, and M Kentouri. 2002. Kyphosis in reared sea bass (Dicentrarchus labrax L.): ontogeny and effects on mortality. Aquaculture 209: 49–58. https://doi.org/10.1016/S0044-8486(01)00821-3.
[59] Abdel, I., E. Abellán, O. López-Albors, P. Valdés, M.J. Nortes, and A. García-Alcázar. 2004. Abnormalities in the juvenile stage of sea bass (Dicentrarchus labrax L.) reared at different temperatures: types, prevalence and effect on growth. Aquaculture International 12: 523–538. https://doi.org/10.1007/s10499-004-0349-9.
[60] Can, Erkan. 2013. Effects of Intensive and Semi-Intensive Rearing on Growth, Survival, and V-Shaped (Lordotic) Skeletal Deformities in Juvenile Gilthead Sea Bream (Sparus aurata).
[61] Eissa, A.E., M. Moustafa, I.N. El-Husseiny, S. Saeid, O. Saleh, and T. Borhan. 2009. Identification of some skeletal deformities in freshwater teleosts raised in Egyptian aquaculture. Chemosphere 77: 419–425. https://doi.org/10.1016/j.chemosphere.2009.06.050.
[62] Lambooij, Bert, Marien A Gerritzen, Henny Reimert, Dirk Burggraaf, Geert André, and Hans Van De Vis. 2008. Evaluation of electrical stunning of sea bass (Dicentrarchus labrax) in seawater and killing by chilling: welfare aspects, product quality and possibilities for implementation. Aquaculture Research 39: 50–58. https://doi.org/10.1111/j.1365-2109.2007.01860.x.
[63] Lines, J. A., and J. Spencer. 2012. Safeguarding the welfare of farmed fish at harvest. Fish Physiology and Biochemistry 38: 153–162. https://doi.org/10.1007/s10695-011-9561-5.
[64] European Food Safety Authority (EFSA). 2009. Species-specific welfare aspects of the main systems of stunning and killing of farmed Seabass and Seabream. EFSA Journal 1010: 1–52. https://doi.org/10.2903/j.efsa.2009.1010.
[65] Teletchea, Fabrice, and Pascal Fontaine. 2012. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries 15: 181–195. https://doi.org/10.1111/faf.12006.
[66] Kousoulaki, K., B.-S. Saether, S. Albrektsen, and C. Noble. 2015. Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: a practical guide for optimizing feed formulation and farming protocols. Aquaculture Nutrition 21: 129–151. https://doi.org/10.1111/anu.12233.
[67] Oliva-Teles, Aires, and Paula Gonçalves. 2001. Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture 202: 269–278. https://doi.org/10.1016/S0044-8486(01)00777-3.
[68] Castro, C., G. Corraze, S. Panserat, and A. Oliva-Teles. 2015. Effects of fish oil replacement by a vegetable oil blend on digestibility, postprandial serum metabolite profile, lipid and glucose metabolism of European sea bass (Dicentrarchus labrax) juveniles. Aquaculture Nutrition 21: 592–603. https://doi.org/10.1111/anu.12184.
[69] Kaushik, S.J., D. Covès, G. Dutto, and D. Blanc. 2004. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230: 391–404. https://doi.org/10.1016/S0044-8486(03)00422-8.






© 2022 fair-fish international

Imprint
Data privacy