Sterlet sturgeon

Acipenser ruthenus

Acipenser ruthenus (Sterlet sturgeon)
Taxonomy
    • Osteichthyes
      • Acipenseriformes
        • Acipenseridae
          • Acipenser ruthenus

Information


Author: João L. Saraiva
Version: 2.0 (2022-01-22) - Revision 1 (2022-07-20)

Cite

Reviewers: Pablo Arechavala-Lopez, Jenny Volstorf
Editor: Billo Heinzpeter Studer

Cite as: »Saraiva, João L.. 2022. Acipenser ruthenus (Farm: Short Profile). In: FishEthoBase, ed. Fish Ethology and Welfare Group. World Wide Web electronic publication. First published 2017-12-29. Version 2.0 Revision 1. https://fishethobase.net.«





FishEthoScore/farm

Acipenser ruthenus
LiPoCe
Criteria
Home range
Depth range
Migration
Reproduction
Aggregation
Aggression
Substrate
Stress
Malformations
Slaughter


Condensed assessment of the species' likelihood and potential for good fish welfare in aquaculture, based on ethological findings for 10 crucial criteria.

Li = Likelihood that the individuals of the species experience good welfare under minimal farming conditions
Po = Potential of the individuals of the species to experience good welfare under high-standard farming conditions
Ce = Certainty of our findings in Likelihood and Potential

FishEthoScore = Sum of criteria scoring "High" (max. 10)

Legend

High
Medium
Low
Unclear
No findings



General remarks

Acipenser ruthenus is the smallest of the sturgeon family. Its current populations are considered vulnerable, majorly due to overfishing and river disruption, and differ from the original in size and biology. Although there are farms rearing this species (many of them for repopulation purposes), it is farmed majorly interbred with Huso huso as 'bester'. There is lack of knowledge on its biology in the wild as well as under farming environment, where aspects such as aggregation, aggression, stress, and malformation rate remain undisclosed. A functional stunning and slaughter protocol remains to be established. Further research directed specifically to this species should be conducted to improve its present and prospective welfare state under farming conditions.




1  Home range

Many species traverse in a limited horizontal space (even if just for a certain period of time per year); the home range may be described as a species' understanding of its environment (i.e., its cognitive map) for the most important resources it needs access to. What is the probability of providing the species' whole home range in captivity?

There are unclear findings for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

LARVAE: WILD: no data found yet. FARM: rectangular troughs: 100 L 1. For sturgeons in general, circular tanks: 2-4 m2 2; ponds: 1-4 ha 2. Further research needed to determine whether this applies to A. ruthenus as well.

JUVENILES: WILD: no data found yet. FARM: tanks: 4 m2 (2 x 2 m) 2 3 4; ponds: 1-100 ha 2 3 4. For sturgeons in general, cages: 20-100 m2 (15-20 m2 for overwintering) 2. Further research needed to determine whether this applies to A. ruthenus as well.

ADULTS: WILD: no data found yet. FARM: JUVENILES.

SPAWNERS: WILD: no data found yet. FARM: maturation tanks: 4 m2 5. For sturgeons in general, pre-spawn holding in "Kazansky" type earthen ponds: 120-130 m 2 or "Kurinsky" type earthen ponds: 30-60 x 12 m 2; long-term holding in concrete tanks: 30-50 m2 2 or cages: 20-100 m2 2; overwintering of breeders in plastic and concrete tanks: >40 m3 2 or "Kurinsky" type concrete ponds: 105 x 17 m or 1,000-4,000 ha separated into different compartments 2. Further research needed to determine whether this applies to A. ruthenus as well.




2  Depth range

Given the availability of resources (food, shelter) or the need to avoid predators, species spend their time within a certain depth range. What is the probability of providing the species' whole depth range in captivity?

It is low for minimal and high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

LARVAE: WILD: no data found yet. FARM: troughs: 30 cm 6. For sturgeons in general, circular tanks: 1 m 2; rearing tanks or trays: 20 cm 2. Further research needed to determine whether this applies to A. ruthenus as well.

JUVENILES: WILD: 17-25 m 7. FARM: tanks: 0.7 m 3. For sturgeons in general, ponds: 2.3-2.5 m 2; cages: 2.5-3.5 m 2. Further research needed to determine whether this applies to A. ruthenus as well.

ADULTS JUVENILES.

SPAWNERS: WILD: 1-14 m  8 9. FARM: maturation tanks: 0.4 m 5. For sturgeons in general, pre-spawn holding in "Kazansky" type earthen ponds: 0.5-2.5 m 2 or "Kurinsky" type earthen ponds: 1.5-2.5 m 2; long-term holding in concrete tanks: 2 m 2 or cages: 3-3.5 m 2; overwintering of breeders in plastic and concrete tanks: >1.5 m 2. Further research needed to determine whether this applies to A. ruthenus as well.




3  Migration

Some species undergo seasonal changes of environments for different purposes (feeding, spawning, etc.) and with them, environmental parameters (photoperiod, temperature, salinity) may change, too. What is the probability of providing farming conditions that are compatible with the migrating or habitat-changing behaviour of the species?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

Resident in fresh water 9 or POTAMODROMOUS 7 10 11 9.

LARVAE: WILD: rivers 11. FARM: reared in freshwater troughs 1 6, tanks or ponds 2.

JUVENILES: WILD: rivers 11, may migrate further downstream after the end of larval stages 7. FARM: reared in freshwater tanks or ponds 3 4. Dark background of tanks reduces stress responses and improves growth 12.

ADULTS: WILD: rivers 11. FARM: JUVENILES.

SPAWNERS: WILD: some populations resident, others may migrate <100-322 km 7 13 at a speed of ca 6.2 km/day 7. FARM: kept in tanks 5. Stressed by long PHOTOPERIOD under red light 14. For sturgeons in general, "Kazansky" or "Kurinsky" type earthen ponds simulate spawning reaches of rivers 2. Further research needed to determine whether this applies to A. ruthenus as well.




4  Reproduction

A species reproduces at a certain age, season, and sex ratio and possibly involving courtship rituals. What is the probability of the species reproducing naturally in captivity without manipulation?

It is low for minimal and high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

WILD: males mature at 3-6, females at 4-8 years old 9. May spawn yearly or skip seasons 11. Spawning takes place in the riverbed or flooded plains 9 where adhesive eggs are laid 2 from late spring to autumn 7. FARM: temperature manipulation 2, hormonal induction of spawning 15 16 17. Stripping or highly invasive surgical methods are applied for egg collection 2 18 and maturity assessment, but less invasive ultrasound technique is available 2. Hermaphrodites and self-fertilisation occur 15.




5  Aggregation

Species differ in the way they co-exist with conspecifics or other species from being solitary to aggregating unstructured, casually roaming in shoals or closely coordinating in schools of varying densities. What is the probability of providing farming conditions that are compatible with the aggregation behaviour of the species?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

LARVAE: WILD: no data found yet. FARM: tanks: 12-17 IND/L 3 1; ponds: 50,000-60,000 IND/ha 2.

JUVENILES: WILD: resident populations live in aggregations of undescribed size 19. FARM: cages: 5 IND/m2 4; ponds: 0.01 kg/m2 (large ponds, extensive culture) to 20-40 kg/m2 (small ponds, intensive culture) 4.

ADULTS: JUVENILES.

SPAWNERS: WILD: form spawning aggregations 16. FARM: 7-8 IND/m2 5.




6  Aggression

There is a range of adverse reactions in species, spanning from being relatively indifferent towards others to defending valuable resources (e.g., food, territory, mates) to actively attacking opponents. What is the probability of the species being non-aggressive and non-territorial in captivity?

There are unclear findings for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a low amount of evidence.

Likelihood
Potential
Certainty

LARVAE: no data found yet.

JUVENILES: no inter-specific aggression found in polyculture, probably limited to small prey because of small mouth 20. Not agressive in high-standard farming conditions 21.

ADULTS: not agressive in high-standard farming conditions 21.

SPAWNERS:  ADULTS.




7  Substrate

Depending on where in the water column the species lives, it differs in interacting with or relying on various substrates for feeding or covering purposes (e.g., plants, rocks and stones, sand and mud). What is the probability of providing the species' substrate and shelter needs in captivity?

It is low for minimal farming conditions. It is high for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

LARVAE: WILD: most sturgeons use pebbles and stones for concealment 22. Further research needed to determine whether this applies to A. ruthenus as well. FARM: usually reared in plastic tanks 1 or earthen ponds 2, where the addition of suitable substrate is possible 23.

JUVENILES: WILD: use substrate for feeding 24. FARM: when farmed in ponds 2 3 4, natural benthic feeds may be grown or provided 2.

ADULTS: JUVENILES.

SPAWNERS: WILD: use substrate (pebbles, gravel or sand) to spawn 16. FARM: "Kurinsky" type ponds provide appropriate substrate, "Kazansky" type tanks provide current gradients 2.




8  Stress

Farming involves subjecting the species to diverse procedures (e.g., handling, air exposure, short-term confinement, short-term crowding, transport), sudden parameter changes or repeated disturbances (e.g., husbandry, size-grading). What is the probability of the species not being stressed?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

Eggs: low hatching success if stored >15 ºC, best at 7-11 ºC 25.

LARVAE: no data found yet.

JUVENILES: acute stress effects of air exposure, water level reduction, and hypoxia reduced by vitamin C and E supplementation 26. For stress and tank background crit. 3.

ADULTS: no data found yet.

SPAWNERS: for stress and PHOTOPERIOD crit. 3.




9  Malformations

Deformities that – in contrast to diseases – are commonly irreversible may indicate sub-optimal rearing conditions (e.g., mechanical stress during hatching and rearing, environmental factors unless mentioned in crit. 3, aquatic pollutants, nutritional deficiencies) or a general incompatibility of the species with being farmed. What is the probability of the species being malformed rarely?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihood
Potential
Certainty

LARVAE: malformations in body shape, external and internal organs, tissue structure, as well as functional and mechanical abnormalities may arise generally in sturgeons, with unknown incidence 2. Ploidy abnormalities following gynogenesis, with hatching rates of 0-50% and survival rates at day 7 of <5% 27. Thyamine administration to spawners increases larval performance and survival with no effect on parents 28.

JUVENILES: malformations of the olfactory organs, eyes, pectoral fins, and opercula, as well as phenodeviations may occur, with variable incidence and dependent on incorrect water temperatures in early stages 2 .

ADULTS: JUVENILES.

SPAWNERS: JUVENILES.




10  Slaughter

The cornerstone for a humane treatment is that slaughter a) immediately follows stunning (i.e., while the individual is unconscious), b) happens according to a clear and reproducible set of instructions verified under farming conditions, and c) avoids pain, suffering, and distress. What is the probability of the species being slaughtered according to a humane slaughter protocol?

It is low for minimal farming conditions. It is high for high-standard farming conditions. Our conclusion is based on a low amount of evidence.

Likelihood
Potential
Certainty

Common slaughter method: for the related A. baerii, hypothermia by immersion in ice-water slurry 29. Further research needed to determine whether this applies to A. ruthenus as well. High-standard slaughter method: percussive stunning through manual spiking or percussive gun performed by experienced staff, followed by bleeding 21.




11  Side note: Domestication

Teletchea and Fontaine introduced 5 domestication levels illustrating how far species are from having their life cycle closed in captivity without wild input, how long they have been reared in captivity, and whether breeding programmes are in place. What is the species’ domestication level?

DOMESTICATION LEVEL 4 30, level 5 being fully domesticated.




12  Side note: Forage fish in the feed

450-1,000 milliard wild-caught fishes end up being processed into fish meal and fish oil each year which contributes to overfishing and represents enormous suffering. There is a broad range of feeding types within species reared in captivity. To what degree may fish meal and fish oil based on forage fish be replaced by non-forage fishery components (e.g., poultry blood meal) or sustainable sources (e.g., soybean cake)?

All age classes: WILD: carnivorous 8 9 31. FARM: fish meal may be partly* replaced by non-forage fishery components 32. It is possible for sturgeon farms to produce live feeds for their reared fish 2.

*partly = <51% – mostly = 51-99% – completely = 100%




Glossary


LARVAE = hatching to mouth opening, for details Findings 10.1 Ontogenetic development
WILD = setting in the wild
FARM = setting in farming environment or under conditions simulating farming environment in terms of size of facility or number of individuals
JUVENILES = fully developed but immature individuals, for details Findings 10.1 Ontogenetic development
ADULTS = mature individuals, for details Findings 10.1 Ontogenetic development
SPAWNERS = adults that are kept as broodstock
POTAMODROMOUS = migrating within fresh water
PHOTOPERIOD = duration of daylight
IND = individuals
DOMESTICATION LEVEL 4 = entire life cycle closed in captivity without wild inputs 30



Bibliography


[1] Rybnikár, J, M. Prokeš, and M. Cileček. 2011. Early development and growth of sterlet (Acipenser ruthenus) in the Czech republic. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 59.
[2] Chebanov, Mikhail S., and Elena V. Galich. 2011. Sturgeon hatchery manual. FAO Fisheries and Aquaculture Technical Paper 558. Ankara: Food and Agriculture Organization of the  United Nations.
[3] Gerasimov, Yu V., and O. L. Vasyura. 2013. Growth and feeding of juvenile sterlet Acipenser ruthenus (Acipenseridae) in a pond after various durations of being preliminarily kept in tanks. Inland Water Biology 6: 228–235. https://doi.org/10.1134/S1995082913030073.
[4] Chebanov, Mihail, and Roland Billard. 2001. The culture of sturgeons in Russia: production of juveniles for stocking and meat for human consumption. Aquatic Living Resources 14: 375–381. https://doi.org/10.1016/S0990-7440(01)01122-6.
[5] Semenkova, Tatiana B., Adelino V.M. Canário, Liubov V. Bayunova, Elsa Couto, Nikolai N. Kolmakov, and Irina A. Barannikova. 2006. Sex steroids and oocyte maturation in the sterlet (Acipenser ruthenus L.). Journal of Applied Ichthyology 22: 340–345. https://doi.org/10.1111/j.1439-0426.2007.00981.x.
[6] Zamaninia, Zeynab, Ameneh Azizi, Behrooz Heidari, and Mahvash Hadavi. 2017. Variations of Immune Parameters in the Early Life Stages and the Female Broodstock of the Cultured Persian Sturgeon, Acipenser persicus (Borodin 1897) and the Sterlet, Acipenser ruthenus (Linnaeus, 1758). Turkish Journal of Fisheries and Aquatic Sciences 17: 1017–1024.
[7] Kalmykov, V. A., G. I. Ruban, and D. S. Pavlov. 2010. Migrations and resources of sterlet Acipenser ruthenus (Acipenseridae) from the lower reaches of the Volga River. Journal of Ichthyology 50: 44–51. https://doi.org/10.1134/S0032945210010066.
[8] Fieszl, Jozsef, Elżbieta Bogacka-Kapusta, Andrzej Kapusta, Urszula Szymańska, and Andrzej Martyniak. 2011. Feeding ecology of sterlet Acipenser ruthenus L. in the Hungarian section of the Danube River. Archives of Polish Fisheries 19: 105–111. https://doi.org/10.2478/v10086-011-0012-9.
[9] FAO. 2017. FAO Fisheries & Aquaculture - Species Fact Sheets - Acipenser ruthenus (Linnaeus, 1758). World Wide Web electronic publication. www.fao.org.
[10] Lenhardt, M., P. Cakic, J. Kolarevic, and Z. Gacic. 2003. Morphometric recognition of two morphs in sterlet (Acipenser ruthenus) population induced by different reproductive behaviour. Journal of Fish Biology 63: 252–252. https://doi.org/10.1111/j.1095-8649.2003.216bf.x.
[11] Holčík, Juraj. 1989. The Freshwater Fishes of Europe: General introduction to fishes ; Acipenseriformes. AULA - Verlag.
[12] Bayrami, Abolfazl, Hamid Allaf Noverian, and Ehsan Asadi Sharif. 2017. Effects of background colour on growth indices and stress of young sterlet (Acipenser ruthenus) in a closed circulated system. Aquaculture Research 48: 2004–2011. https://doi.org/10.1111/are.13033.
[13] Hensel, Karol, and Juraj Holcík. 1997. Past and current status of sturgeons in the upper and middle Danube River. In Sturgeon Biodiversity and Conservation, 185–200. Developments in Environmental Biology of Fishes. Springer, Dordrecht. https://doi.org/10.1007/0-306-46854-9_9.
[14] Azarin, Hajar, Mohammad Sadegh Aramli, and Fatemeh Naderi. 2015. Selected coelomic fluid parameters of sterlet, Acipenser ruthenus L.: effects of light color and photoperiod. Archives of Polish Fisheries 22: 243–247. https://doi.org/10.2478/aopf-2014-0025.
[15] Williot, P., R. Brun, T. Rouault, M. Pelard, D. Mercier, and A. Ludwig. 2005. Artificial spawning in cultured sterlet sturgeon, Acipenser ruthenus L., with special emphasis on hermaphrodites. Aquaculture 246: 263–273. https://doi.org/10.1016/j.aquaculture.2005.02.048.
[16] Maltsev, SA. Conservation of the Sturgeon Fish in Lower Volga.
[17] Horváth, L., A. Péteri, and J. Kouril. 1986. Successful sterlet, Acipenser ruthenus L., propagation with synthetic LH-RH hormone. Aquaculture Research 17: 113–116. https://doi.org/10.1111/j.1365-2109.1986.tb00091.x.
[18] Falahatkar, B., and I. E. Komaee. 2011. Egg extraction of sterlet sturgeon (Acipenser ruthenus L.) through surgery. Journal of Veterinary Research 66: 349–379.
[19] Kalmykov, V. A., G. I. Ruban, and D. S. Pavlov. 2009. On the populational structure of sterlet Acipenser ruthenus (Acipenseridae) from the Volga Lower reaches. Journal of Ichthyology 49: 339–347. https://doi.org/10.1134/S0032945209040067.
[20] Kozłowski, Michał, Mirosław Szczepkowski, Krzysztof Wunderlich, Bożena Szczepkowska, and Iwona Piotrowska. 2014. Polyculture of juvenile pikeperch (Sander lucioperca (L.)) and sterlet (Acipenser ruthenus L.) in a recirculating system. Fisheries & Aquatic Life 22. https://doi.org/10.2478/aopf-2014-0024.
[21] Anonymous farmers. 2018. Personal communication.
[22] Khodorevskaya, R. P., G. I. Ruban, and D. S. Pavlov. 2009. Behaviour, migrations, distribution and stocks of sturgeons in the Volga-Caspian basin. World Sturgeon Conservation Society: Special Publication 3. Norder- stedt, Germany: Books on Demand GmbH.
[23] Saraiva, João L. 2018. Personal communication.
[24] Poleksic, Vesna, Mirjana Lenhardt, Ivan Jaric, Dragana Djordjevic, Zoran Gacic, Gorcin Cvijanovic, and Bozidar Raskovic. 2010. Liver, gills, and skin histopathology and heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758). Environmental Toxicology and Chemistry 29: 515–521. https://doi.org/10.1002/etc.82.
[25] Linhart, O, Wl Shelton, V Tučková, M Rodina, and Mam Siddique. 2016. Effects of Temperature on In Vitro Short-Term Storage of Sterlet Sturgeon (Acipenser Ruthenus) Ova. Reproduction in Domestic Animals 51: 165–170. https://doi.org/10.1111/rda.12661.
[26] Tatina, M., R. Taati, M. Bahmani, M. Soltani, and M. Gharibkhani. 2012. Effect of acute stress on fluctuations of cortisol and glucose of sterlet (Acipenser ruthenus) fed with different levels of vitamins C and E. Journal of Aquatic Animals and Fisheries 2: 9–19.
[27] Fopp-Bayat, D., K. Ocalewicz, M. Kucinski, M. Jankun, and B. Laczynska. 2017. Disturbances in the ploidy level in the gynogenetic sterlet Acipenser ruthenus. Journal of Applied Genetics 58: 373–380. https://doi.org/10.1007/s13353-017-0389-2.
[28] Ghiasi, Sareh, Bahram Falahatkar, Murat Arslan, and Konrad Dabrowski. 2017. Physiological changes and reproductive performance of Sterlet sturgeon Acipenser ruthenus injected with thiamine. Animal Reproduction Science 178: 23–30. https://doi.org/10.1016/j.anireprosci.2017.01.005.
[29] Williot, Patrick, Mikhail Chebanov, and Guy Nonnotte. 2018. Welfare in the Cultured Siberian Sturgeon, Acipenser baerii Brandt: State of the Art. In The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2 - Farming, 403–450. Springer, Cham. https://doi.org/10.1007/978-3-319-61676-6_19.
[30] Teletchea, Fabrice, and Pascal Fontaine. 2012. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries 15: 181–195. https://doi.org/10.1111/faf.12006.
[31] Strel’nikova, A. P. 2012. Feeding of juvenile sterlet (Acipenser ruthenus, Acipenseridae) in the Danube River midstream. Journal of Ichthyology 52: 85–90. https://doi.org/10.1134/S0032945212010110.
[32] Ustaoglu, S., and B. Renner. 2006. Effects of partial replacement of fishmeal with isolated soy protein on digestibility and growth performance in sterlet (Acipenser ruthenus).






© 2022 fair-fish international

Imprint
Data privacy