homebutton

Catla

Labeo catla

Labeo catla (Catla)
enlarge button
Distribution
no distribution map available
least concern



Information


Author: Caroline Marques Maia
Version: B | 1.3 (2022-07-29)

Please note: This part of the profile is currently being revised.


Reviewers: Jenny Volstorf, Pablo Arechavala-Lopez
Editor: Jenny Volstorf

Initial release: 2021-04-13
Version information:
  • Appearance: B
  • Last minor update: 2022-07-29

Cite as: »Marques Maia, Caroline. 2022. Labeo catla (WelfareCheck | farm). In: fair-fish database, ed. fair-fish. World Wide Web electronic publication. First published 2021-04-13. Version B | 1.3. https://fair-fish-database.net.«





WelfareScore | farm

Labeo catla
LiPoCe
Criteria
Home range
score-li
score-po
score-ce
Depth range
score-li
score-po
score-ce
Migration
score-li
score-po
score-ce
Reproduction
score-li
score-po
score-ce
Aggregation
score-li
score-po
score-ce
Aggression
score-li
score-po
score-ce
Substrate
score-li
score-po
score-ce
Stress
score-li
score-po
score-ce
Malformations
score-li
score-po
score-ce
Slaughter
score-li
score-po
score-ce


Legend

Condensed assessment of the species' likelihood and potential for good fish welfare in aquaculture, based on ethological findings for 10 crucial criteria.

  • Li = Likelihood that the individuals of the species experience good welfare under minimal farming conditions
  • Po = Potential of the individuals of the species to experience good welfare under high-standard farming conditions
  • Ce = Certainty of our findings in Likelihood and Potential

WelfareScore = Sum of criteria scoring "High" (max. 10)

score-legend
High
score-legend
Medium
score-legend
Low
score-legend
Unclear
score-legend
No findings



General remarks

Labeo catla is among the most cultured fishes in India, belonging to the Indian major carps together with Cirrhinus mrigala and L. rohita. The wild populations of this freshwater carp can be found in reservoirs and riverine areas in India, Bangladesh, Pakistan, and Burma. Despite that, there is limited information about this species in natural conditions, especially about home range, depth range, substrate, and aggregation needs. L. catla is a surface feeder and is often raised in polyculture systems with other carps, presenting better performance when aggregated with species of different feeding habits. Structures such as bamboo poles can be used as periphyton substrate in these polycultures, but not for feeding L. catla but instead for feeding other carp species and thereby reducing competition for planktons. Although its entire life cycle is closed in captivity, it is necessary to induce the reproduction by hormonal manipulation. Moreover, there is no information about adults under farming conditions, probably because this species is sold before reaching maturity. It is a common practice in large farms that fishes are just washed thoroughly in water, packed with crushed ice at a ratio of 1:1 in rectangular plastic crates, and transported for long distances to be sold as fresh as possible. Thus, further research is needed on the stunning and slaughter process, besides the stress response of this species.




1  Home range

Many species traverse in a limited horizontal space (even if just for a certain period of time per year); the home range may be described as a species' understanding of its environment (i.e., its cognitive map) for the most important resources it needs access to.

What is the probability of providing the species' whole home range in captivity?

It is unclear for minimal and high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

LARVAE and FRYWILD: no data found yet. FARM: reservoir cages: 9 m2 (3 x 3 m) 1; cylindro-vertical fibre-reinforced plastic tanks after induced spawning: 1.4 m diameter 2. For carps in general, earthen ponds: 100-1,000 m2 3; tanks: 1.4 m2 (1.2 x 1.2 m) 3. Further research needed to determine whether this applies to L. catla as well.

JUVENILES: WILD: no data found yet. FARM: earthen ponds: 40 m(8 x 5 m) 4 5, 75 m2 (7.5 x 10 m) 6 7 8, 120 m(15 x 8 m) 9, 100-680 m2 7 10 11, 800 m2 (40 x 20 m) 12 13 compartmentalised with nets into 100 m2 areas 12; raceways: 102.1 m(6.7 x 15.2 m) 14; rainwater reservoirs: 200 m2 (50 x 4 m) 15.

ADULTS: WILD and FARM: no data found yet.

SPAWNERS: WILDno data found yet. FARM: ponds: 1,000 m2 (50 x 20 m) 2; cylindro-vertical fibre-reinforced plastic tanks for induced spawning: 2.2 m diameter 2; cemented cisterns: 2.4 m diameter 16. For carps in general, earthen ponds: 20-30 m or 2,000-25,000 m2 3; storage tanks: 200 m2 (10 x 20 m), 450 m2 (15 x 30 m) 3; breeding tanks: 3.8 m2 (2.5 x 1.5 m), 8 m2 (4 x 2 m), 18.8 m2 (7.5 x 2.5 m), 2 m diameter 3. Further research needed to determine whether this applies to L. catla as well.




2  Depth range

Given the availability of resources (food, shelter) or the need to avoid predators, species spend their time within a certain depth range.

What is the probability of providing the species' whole depth range in captivity?

It is unclear for minimal and high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

LARVAE and FRY: WILD: no data found yetFARM: natural lakes: 3-4 m 17; reservoir cages: 2 m 1; cylindro-vertical fibre-reinforced plastic tanks after induced spawning: 1 m 2. For carps in general, earthen ponds: 0.5-1.2 m 3; tanks: 1.2 m 3. Further research needed to determine whether this applies to L. catla as well.

JUVENILES: WILD: no data found yet. FARM: natural lakes: 3-4 m 17; ponds: 0.8-2.0 m 6 12 7 8 10 13 11 4 5 9; rainwater reservoirs: 1.0-1.8 m 15.

ADULTS: WILD: no data found yet. FARM: natural lakes: 3-4 m 17. For carps in general, earthen ponds: 0.8-2 m 3. Further research needed to determine whether this applies to L. catla as well.

SPAWNERS: WILD: no data found yetFARM: ponds: 1.5-2 m 2; cylindro-vertical fibre-reinforced plastic tanks for induced spawning: 0.9 m 2; separate cemented cisterns: 0.9 m 16. For carps in general, earthen ponds: 1.0-2.5 m or deeper depending on climate zone 3; storage tanks: 1.0-1.5 m 3; breeding tanks: 1 m 3. Further research needed to determine whether this applies to L. catla as well.




3  Migration

Some species undergo seasonal changes of environments for different purposes (feeding, spawning, etc.), and to move there, they migrate for more or less extensive distances.

What is the probability of providing farming conditions that are compatible with the migrating or habitat-changing behaviour of the species?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

POTAMODROMOUS 18.

LARVAE and FRY: WILD: 10-14 h PHOTOPERIOD, fresh water 19FARM: natural lakes: 11-13 h PHOTOPERIOD, 25-27 °C, fresh water 17; ponds: range 18.6-33.3 °C, fresh water 2; reservoirs: range 18-28 °C 1LAB: individuals acclimated to 28 °C: cumulative mortality rates of 89-18% at 10-25 °C and all larvae die at 10 °C within 2 days 20. For details of holding systems crit. 1 and 2.

JUVENILES: WILD: 10-14 h PHOTOPERIOD, fresh water 19. Mainly site fidelity or migrating <1 km, some <2 km, a few <9 km up- and downstream during flood season including through sluice gates 18. FARM: natural lakes: 11-13 h PHOTOPERIOD, 25-27 °C, fresh water 17; ponds: 25.8-29.4 °C 4 5, range 17-28 °C 8, range 21-34 °C, fresh water 6 12 7 10 13 11; rainwater reservoirs: range 26.8-31.9 °C 15. For details of holding systems crit. 1 and 2.

ADULTSWILD: JUVENILESFARM: natural lakes: 11-13 h PHOTOPERIOD, 25-27 °C, fresh water 17. For details of holding systems crit. 1 and 2.

SPAWNERS: WILD: LARVAE. FARM:  ADULTS.




4  Reproduction

A species reproduces at a certain age, season, and sex ratio and possibly involving courtship rituals.

What is the probability of the species reproducing naturally in captivity without manipulation of theses circumstances?

It is low for minimal and high-standard farming conditions. Our conclusion is based on a low amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

WILD: mature at 2 years old 21 22. Spawn during monsoon in May-September depending on latitude 3 19. FARM: mature at 2 years old 23 2. Attempts to advance spawning by combination of above-average temperatures with long PHOTOPERIOD and ovaprim injection to January-February (off-spawning season), sex ratio: 3 females:2 males 16. Partial success of induced spawning with pituitary extract of Tachysurus thalassinus or T. jella followed by stripping at 1 female:1-2 males sex ratio 23Induced spawning using gonadotropin releasing hormone at 1:1 sex ratio, but lower success, higher latency, lower fecundity, and lower hatching rate in pre-monsoon season 2. For carps in general, in storage tanks, spawners are kept separated by sex 3. Further research needed to determine whether this applies to L. catla as well.




5  Aggregation

Species differ in the way they co-exist with conspecifics or other species from being solitary to aggregating unstructured, casually roaming in shoals or closely coordinating in schools of varying densities.

What is the probability of providing farming conditions that are compatible with the aggregation behaviour of the species?

It is unclear for minimal and high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

LARVAE and FRYWILD: no data found yet. FARM: reservoir cages: varied individual densities in a polyculture with another carp species of overall density of 0.05-0.2 IND/L 1. For carps in general, earthen ponds: 1,000 IND/m2 for LARVAE in nursery ponds, 12.5-25 IND/m2 for FRY in breeding ponds 3. Further research needed to determine whether this applies to L. catla as well.

JUVENILESWILD: no data found yet. FARM: ponds: 1.5 IND/m2, higher growth when stocked in polyculture with Labeo rohita at 20 L. catla:80 L. rohita than in monoculture, best ratio for both species: 40:60 6; 0.07-0.6 IND/m2 in polyculture with 1-6 other carp species of overall density of 0.7-1.2 IND/m3 12 7 8 13 4 5 9 14; 0.3-0.5 IND/min a polyculture with 2-3 other carps and 2 other small fish species of overall density of 3.5-4.2 IND/m2 10 11. Rainwater reservoirs: better growth and survival at 0.2 than 0.3 IND/m2 in a polyculture with 2 other carp species of overall density of 0.5-0.8 IND/m2 than 1.1 IND/m2 15. LAB: stressed (to the point of mortality) by high stocking density (25 g/L) 24.

ADULTSWILD and FARMno data found yet.

SPAWNERS: WILD: no data found yet. FARM: ponds: 0.1-0.3 kg/m2 2 3; cemented cisterns: 3 IND/m3 16. For density and malformations crit. 9.




6  Aggression

There is a range of adverse reactions in species, spanning from being relatively indifferent towards others to defending valuable resources (e.g., food, territory, mates) to actively attacking opponents.

What is the probability of the species being non-aggressive and non-territorial in captivity?

It is unclear for minimal and high-standard farming conditions. Our conclusion is based on a low amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

LARVAE and FRY: no aggression reported in polyculture 1.

JUVENILES: no aggression reported in polycultures 3 6 12 7 8 13 4 5 9 14, but growth of L. catla can be negatively affected, probably by competitive interactions for food 11.

ADULTS: no data found yet.

SPAWNERS: no data found yet.




7  Substrate

Depending on where in the water column the species lives, it differs in interacting with or relying on various substrates for feeding or covering purposes (e.g., plants, rocks and stones, sand and mud).

What is the probability of providing the species' substrate and shelter needs in captivity?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

Eggs: WILD: no data found yet. FARM: for carps in general, double-walled hapa nets (e.g., mosquito netting and whole cloth) to protect from predators 3. Further research needed to determine whether this applies to L. catla as well.

LARVAE and FRY: WILD: no data found yet. FARM: natural lakes with algal bloom 17. For details of holding systems crit. 1 and 2.

JUVENILES: WILD: no data found yet. FARM: natural lakes with algal bloom 17; ponds with turbid waters during monsoon (Secchi disc: 0.3 m) 11; ponds: 2.4-10 vertically planted bamboo poles/m2 (1.8-2 m length, 1.5-5.6 cm diameter) 6 7 8 4 5, 0.2 m2 rice straw mats/m2 4 5, 0.07-0.3 kg sugarcane bagasse bundles/m2 (0.8 m length, 3.3 cm diameter) 12 or 0.05 m2 bamboo mats/m2 fixed with bamboo poles as periphyton substrate 13

ADULTS: WILD: no data found yet. FARM:  LARVAE.

SPAWNERS: WILD: no data found yet. FARM:  LARVAE.




8  Stress

Farming involves subjecting the species to diverse procedures (e.g., handling, air exposure, short-term confinement, short-term crowding, transport), sudden parameter changes or repeated disturbances (e.g., husbandry, size-grading).

What is the probability of the species not being stressed?

It is unclear for minimal and high-standard farming conditions. Our conclusion is based on a low amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

FRYFARM: stressed (to the point of mortality) by 6 h transport in plastic bags at 150-200 IND/L 25.

JUVENILESFARM: no data found yet. LAB: for stress and stocking density crit. 5.

ADULTS: FARM: no data found yet.

SPAWNERS: FARM: no data found yet.




9  Malformations

Deformities that – in contrast to diseases – are commonly irreversible may indicate sub-optimal rearing conditions (e.g., mechanical stress during hatching and rearing, environmental factors unless mentioned in crit. 3, aquatic pollutants, nutritional deficiencies) or a general incompatibility of the species with being farmed.

What is the probability of the species being malformed rarely?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a medium amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

Eggs: for Indian major carps including L. catla, eggs <2.4 mm diameter of pre-monsoon spawning resulted in undifferentiated cephalic mass in 60% 26.

LARVAE: for Indian major carps including L. catla, malformations in 0.5-1% during monsoon, 1-3% during pre-monsoon, 2-5% during post-monsoon: indeterminate embryonic mass, undifferentiated cephalic mass, unusual coelomic cavity and yolk sac, axial imparity (e.g., curvature of notochord, stump tail), microsomia, and combinations 26. For carps in general, malformations due to insufficient nutrition 3. Further research needed to determine whether this applies to L. catla as well.

JUVENILESno data found yet.

ADULTS: multiple morphological abnormalities probably due to pesticides in the water: vertebral deformities, abnormal height, abnormal disposition of fins, and malformations of body scales, lateral line and swim bladder 27.

SPAWNERS: underdeveloped gonads if >0.1 kg/m2, insufficient manuring, Zooplankton production, artificial feed 3.




10  Slaughter

The cornerstone for a humane treatment is that slaughter a) immediately follows stunning (i.e., while the individual is unconscious), b) happens according to a clear and reproducible set of instructions verified under farming conditions, and c) avoids pain, suffering, and distress.

What is the probability of the species being slaughtered according to a humane slaughter protocol?

It is low for minimal farming conditions. It is medium for high-standard farming conditions. Our conclusion is based on a low amount of evidence.

Likelihoodscore-li
Potentialscore-po
Certaintyscore-ce

Common slaughter method: asphyxia on ice 22. High-standard slaughter method: for the related C. carpio, electrical plus percussive stunning (followed by evisceration, gill cut or destruction of the heart) 28 or immersion in clove oil (followed by percussive killing 29). Further research needed for a specific protocol and to determine whether this applies to L. catla as well.




Side note: Domestication

Teletchea and Fontaine introduced 5 domestication levels illustrating how far species are from having their life cycle closed in captivity without wild input, how long they have been reared in captivity, and whether breeding programmes are in place.

What is the species’ domestication level?

DOMESTICATION LEVEL 4 30, level 5 being fully domesticated.




Side note: Forage fish in the feed

450-1,000 milliard wild-caught fishes end up being processed into fish meal and fish oil each year which contributes to overfishing and represents enormous suffering. There is a broad range of feeding types within species reared in captivity.

To what degree may fish meal and fish oil based on forage fish be replaced by non-forage fishery components (e.g., poultry blood meal) or sustainable sources (e.g., soybean cake)?

All age classes: WILD: probably omnivorous 3. FARM: historically, mostly plant-based feed, but increase of fish meal and fish oil for growth benefits 3. (The small part of) fish oil may be partly* replaced 31; fish meal may be partly to mostly* replaced 14.

*partly = <51% – mostly = 51-99% – completely = 100%




Glossary


ADULTS = mature individuals, for details Findings 10.1 Ontogenetic development
DOMESTICATION LEVEL 4 = entire life cycle closed in captivity without wild inputs 30
FARM = setting in farming environment or under conditions simulating farming environment in terms of size of facility or number of individuals
FRY = larvae from external feeding on, for details Findings 10.1 Ontogenetic development
IND = individuals
JUVENILES = fully developed but immature individuals, for details Findings 10.1 Ontogenetic development
LAB = setting in laboratory environment
LARVAE = hatching to mouth opening, for details Findings 10.1 Ontogenetic development
PHOTOPERIOD = duration of daylight
POTAMODROMOUS = migrating within fresh water
SPAWNERS = adults during the spawning season; in farms: adults that are kept as broodstock
WILD = setting in the wild



Bibliography


1 Mane, Atish, Kiran Dube, Tincy Varghese, Balasaheb Chavan, and Manoj Kamble. 2019. Effects of Stocking Density on Growth Performance, Survival and Production of Catla catla and Labeo rohita During Nursery Rearing in Cages. Proceedings of the National Academy of Sciences, India - Section B: Biological Sciences 89: 275–281. https://doi.org/10.1007/s40011-017-0940-2.
2 Ghosh, A., B.C. Mohapatra, P.P. Chakrabarti, A. Hussan, and A. Das. 2019. Induced breeding of Catla catla carried out at low temperature in FRP carp hatchery of Arunachal Pradesh, India. Journal of Environmental Biology 40: 328–334. https://doi.org/10.22438/jeb/40/3/MRN-768.
3 Jhingran, V.G., and R.S.V. Pullin. 1985. A hatchery manual for the common, Chinese and Indian major carps. Vol. 252. ICLARM Studies and Reviews 11. Asian Development Bank and International Center for Living Aquatic Resources Management.
4 Rai, Sunila, Yang Yi, Md Abdul Wahab, Amrit N Bart, and James S Diana. 2008. Comparison of rice straw and bamboo stick substrates in periphyton‐based carp polyculture systems. Aquaculture Research 39: 464–473. https://doi.org/10.1111/j.1365-2109.2008.01898.x.
5 Rai, S., Y. Yi, Md. Wahab, A. Bart, and J.S. Diana. 2010. Comparison of the Growth and Production of Carps in Polyculture Ponds with Supplemental Feed using Rice Straw and Kanchi as Substrates. Our Nature 8: 92–105. https://doi.org/10.3126/on.v8i1.4316.
6 Azim, M. E., M. A. Wahab, A. A. van Dam, M. C. M. Beveridge, E. A. Huisman, and M. C. J. Verdegem. 2001. Optimization of stocking ratios of two Indian major carps, rohu (Labeo rohita Ham.) and catla (Catla catla Ham.) in a periphyton-based aquaculture system. Aquaculture 203: 33–49. https://doi.org/10.1016/S0044-8486(01)00602-0.
7 Azim, M.E., M.M. Rahaman, M.A. Wahab, T. Asaeda, D. C. Little, and M.C.J. Verdegem. 2004. Periphyton-based pond polyculture system: a bioeconomic comparison of on-farm and on-station trials. Aquaculture 242: 381–396. https://doi.org/10.1016/j.aquaculture.2004.09.008.
8 Azim, M.E., M.A. Wahab, P.K. Biswas, T. Asaeda, T. Fujino, and M.C.J. Verdegem. 2004. The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquaculture 232: 441–453. https://doi.org/10.1016/j.aquaculture.2003.08.010.
9 Mahboob, S. 2014. Replacing Fish Meal With a Blend of Alternative Plant Proteins and its Effect on the Growth Performance of Catla catla and Hypophthalmichthys molitrix. Pakistan Journal of Zoology 747–752: 6.
10 Alim, Muhammed Abdul, Muhammed Abdul Wahab, and Ana Milstein. 2005. Effects of increasing the stocking density of large carps by 20% on ‘cash’ carp–small fish polyculture of Bangladesh. Aquaculture Research 36: 317–325. https://doi.org/https://doi.org/10.1111/j.1365-2109.2004.01199.x.
11 Milstein, A., A. Kadir, and M. A. Wahab. 2008. The effects of partially substituting Indian carps or adding silver carp on polycultures including small indigenous fish species (SIS). Aquaculture 279: 92–98. https://doi.org/10.1016/j.aquaculture.2008.04.009.
12 Keshavanath, P., T.J. Ramesh, B. Gangadhar, M.C.M. Beveridge, A.A. van Dam, and M.C.J. Verdegem. 2001. On-farm evaluation of Indian major carp production with sugarcane bagasse as substrate for periphyton. Asian Fisheries Science 14: 367–376.
13 Sahu, P. K., J. K. Jena, P. C. Das, S. Mondal, and R. Das. 2007. Production performance of Labeo calbasu (Hamilton) in polyculture with three Indian major carps Catla catla (Hamilton), Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton) with provision of fertilizers, feed and periphytic substrate as varied inputs. Aquaculture 262: 333–339. https://doi.org/10.1016/j.aquaculture.2006.11.016.
14 Karim, Aasia, and Mohammad Shoaib. 2019. Influence of Corn Gluten Meal on Growth Parameters and Carcass Composition of Indian Major Carps (Catla catla, Labeo rohita and Cirhinus mrigala). Turkish Journal of Fisheries and Aquatic Sciences 19: 1–6. https://doi.org/10.4194/1303-2712-v19_1_01.
15 Mohanty, R. K. 2004. Density-dependent growth performance of Indian major carps in rainwater reservoirs. Journal of Applied Ichthyology 20: 123–127. https://doi.org/10.1046/j.1439-0426.2003.00532.x.
16 Sarkar, S. K., A. Saha, S. Dasgupta, S. Nandi, D. K. Verma, P. Routray, C. Devaraj, et al. 2010. Photothermal manipulation of reproduction in Indian major carp: a step forward for off-season breeding and seed production. Current Science (00113891) 99: 960–964.
17 Sachidanandamurthy, K. L., and H. N. Yajurvedi. 2008. A study on growth co-efficient and relative condition factor of the major carp (Catla catla) in two lakes differing in water quality. Applied Ecology and Environmental Research 6: 33–47.
18 Halls, A. S., D. D. Hoggarth, and K. Debnath. 1998. Impact of flood control schemes on river fish migrations and species assemblages in Bangladesh. Journal of Fish Biology 53: 358–380. https://doi.org/https://doi.org/10.1111/j.1095-8649.1998.tb01037.x.
19 Johal, M. S., and K. K. Tandon. 1992. Age and growth of the carp Catla catla (Hamilton, 1822) from northern India. Fisheries Research 14: 83–90. https://doi.org/10.1016/0165-7836(92)90075-5.
20 Sharma, J.G., S.P. Singh, P. Mittal, and R. Chakrabarti. 2014. Impact of Temperature Gradient on the Indian Major Carp Catla catla Larvae. Proceedings of the National Academy of Sciences. India. Section B? Biological Sciences 86. https://doi.org/10.1007/s40011-014-0419-3.
21 Alikunhi, K. H. 1957. Fish culture in India.
22 Jena, J.K. 2009. Cultured Aquatic Species Information Programme. Catla catla. Rome: FAO Fisheries and Aquaculture Department.
23 Varghese, T. J., and G.P. S. Rao. 1976. Induced spawning of the Chinese silver carp, Hypophthalmichthys molitrix (C. and V.) and the Indian major carp, Catla catla (Ham.) using marine catfish pituitary extract. In , 417–419. Colombo, Sri Lanka.
24 Fatima, Shafaq, Shadab Izhar, Zaeema Usman, Farzana Rashid, Zakia Kanwal, Ghazala Jabeen, and Asma Abdul Latif. 2018. Effects of High Stocking Density on Condition Factor and Profile of Free Thyroxine and Cortisol in Catla catla (Hamilton, 1822) and Labeo rohita (Hamilton, 1822). Turkish Journal of Fisheries and Aquatic Sciences 18. https://doi.org/10.4194/1303-2712-v18_1_25.
25 Chatterjee, Nirupama, Asim K Pal, Tilak Das, Manush S Mohammed, Kamal Sarma, Gudipati Venkateshwarlu, and Subhas C Mukherjee. 2006. Secondary stress responses in Indian major carps Labeo rohita (Hamilton), Catla catla (Hamilton) and Cirrhinus mrigala (Hamilton) fry to increasing packing densities. Aquaculture Research 37: 472–476. https://doi.org/10.1111/j.1365-2109.2006.01469.x.
26 Rath, S.C., S.D. Gupta, and S. Dasgupta. 1995. Common embryonic abnormalities of Indian major carps bred in indoor hatchery systems. Journal of Aquaculture in the Tropics 10: 193–199.
27 Wani, MA, and SPS Dutta. 2014. First Record of an Anomalous Catla catla (Ham. Buch) in Fresh Water Fish Ponds of Gurdaspur District, Punjab (India). Journal of Aquaculture Research & Development 5. https://doi.org/10.4172/2155-9546.1000246.
28 Retter, Karina, Karl-Heinz Esser, Matthias Lüpke, John Hellmann, Dieter Steinhagen, and Verena Jung-Schroers. 2018. Stunning of common carp: Results from a field and a laboratory study. BMC Veterinary Research 14: 1–11. https://doi.org/10.1186/s12917-018-1530-0.
29 Rahmanifarah, K., B. Shabanpour, and A. Sattari. 2011. Effects of Clove Oil on Behavior and Flesh Quality of Common Carp  (Cyprinus carpio L.) in Comparison with Pre-slaughter CO2 Stunning, Chilling and Asphyxia. Turkish Journal of Fisheries and Aquatic Sciences 11: 139–147.
30 Teletchea, Fabrice, and Pascal Fontaine. 2012. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries 15: 181–195. https://doi.org/10.1111/faf.12006.
31 Manjappa, K., P. Keshavanath, and B. Gangadhar. 2016. Growth response of Catla catla (Hamilton,1822) raised in manured tanks on low fishmeal diets,with a note on carcass composition and digestive enzyme activity. Indian Journal of Fisheries 63: 96–103. https://doi.org/10.21077/ijf.2016.63.4.52678-15.


contents
show all details
«