WILD = setting in the wild
FRY = larvae from external feeding on, for details
➝ Findings 10.1 Ontogenetic development
IND = individuals
SMOLTS = juvenile stage migrating to the sea, for details
➝ Findings 10.1 Ontogenetic development
JUVENILES = fully developed but immature individuals, for details
➝ Findings 10.1 Ontogenetic development
ADULTS = mature individuals, for details
➝ Findings 10.1 Ontogenetic development
FARM = setting in farm environment
LAB = setting in laboratory environment
FOOD CONVERSION RATIO = (food offered / weight gained)
ALEVINS = larvae until the end of yolk sac absorption, for details
➝ Findings 10.1 Ontogenetic development
MILLIARD = 1,000,000,000
40 41PARR = juvenile stage in rivers, for details
➝ Findings 10.1 Ontogenetic development
KELT = adults surviving spawning, for details
➝ Findings 10.1 Ontogenetic development
GRILSE = adults returning from sea to home river to spawn, for details
➝ Findings 10.1 Ontogenetic development
POTAMODROMOUS = migrating within fresh water
ANADROMOUS = migrating from the sea into fresh water to spawn
TOTAL LENGTH = from snout to tip of caudal fin as compared to fork length (which measures from snout to fork of caudal fin)
48 or standard length (from head to base of tail fin) or body length (from the base of the eye notch to the posterior end of the telson)
GENERALIST = Generalists detect a narrow bandwidth of sound frequencies (<50-500 Hz, 1,500 Hz max.). High hearing threshold = cannot detect quieter sounds. Typically no swim bladder or no attachment of the swim bladder to the inner ear. Live in loud environments (rivers)
55 56.SHYNESS-BOLDNESS = reaction to risky (but not new!) situations, e.g. predators or humans. Referred to as docility, tameness, fearfulness elsewhere. Tests: predator presentation, predator stimulus, threat, trappability (latency to enter a trap for first time can be exploration), resistance to handlers (Trapezov stick test), tonic immobility (catatonic-like death-feigning anti predator response)
60.
EXPLORATION-AVOIDANCE = reaction to new situations, e.g. new habitat, new food, novel objects. Referred to as neophobia/neophilia elsewhere. Tests: open field, trappability for first time, novel environment, hole board (time spent with head in holes), novel object
60.
AGGRESSIVENESS = agonistic reactions towards conspecifics. Tests: mirror image, social interaction/diadic encounters
60.
[1] Tatara, Christopher P, Stephen C Riley, and Julie A Scheurer. 2008. Environmental enrichment in steelhead (Oncorhynchus mykiss) hatcheries: field evaluation of aggression, foraging, and territoriality in natural and hatchery fry. Canadian Journal of Fisheries and Aquatic Sciences 65: 744–753. https://doi.org/10.1139/f08-004.
[2] Patterson, Kristen, and Paul J. Blanchfield. 2013. Oncorhynchus mykiss escaped from commercial freshwater aquaculture pens in Lake Huron, Canada. Aquaculture Environment Interactions 4: 53–65. https://doi.org/10.3354/aei00073.
[3] McMichael, Geoffrey A., Cameron S. Sharpe, and Todd N. Pearsons. 1997. Effects of Residual Hatchery-Reared Steelhead on Growth of Wild Rainbow Trout and Spring Chinook Salmon. Transactions of the American Fisheries Society 126: 230–239. https://doi.org/10.1577/1548-8659(1997)126<0230:EORHRS>2.3.CO;2.
[4] McMichael, Geoffrey A., Todd N. Pearsons, and Steven A. Leider. 1999. Behavioral Interactions among Hatchery-Reared Steelhead Smoltsand Wild Oncorhynchus mykiss in Natural Streams. North American Journal of Fisheries Management 19: 948–956. https://doi.org/10.1577/1548-8675(1999)019<0948:BIAHRS>2.0.CO;2.
[5] Boyer, Matthew C, Clint C Muhlfeld, and Fred W Allendorf. 2008. Rainbow trout (Oncorhynchus mykiss) invasion and the spread of hybridization with native westslope cutthroat trout (Oncorhynchus clarkii lewisi). Canadian Journal of Fisheries and Aquatic Sciences 65: 658–669. https://doi.org/10.1139/f08-001.
[6] Shapovalov, Leo, and Alan C. Taft. 1954. The Life Histories of the Steelhead Rainbow Trout (Salmo gairdneri gairdneri) and Silver Salmon (Oncorhynchus kisutch) With Special Reference to Waddell Creek, California, and Recommendations Regarding Their Management. Fish Bulletin 98. State of California Department of Fish and Game.
[7] Bradford, Michael J, and Paul S Higgins. 2001. Habitat-, season-, and size-specific variation in diel activity patterns of juvenile chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences 58: 365–374. https://doi.org/10.1139/f00-253.
[8] Riehle, Michael D., and J. S. Griffith. 1993. Changes in Habitat Use and Feeding Chronology of Juvenile Rainbow Trout (Oncorhynchus mykiss) in Fall and the Onset of Winter in Silver Creek, Idaho. Canadian Journal of Fisheries and Aquatic Sciences 50: 2119–2128. https://doi.org/10.1139/f93-237.
[9] Meyer, K. A., and J. S. Gregory. 2000. Evidence of concealment behavior by adult rainbow trout and brook trout in winter. Ecology of Freshwater Fish 9: 138–144. https://doi.org/10.1111/j.1600-0633.2000.eff090302.x.
[10] Light, Jeffrey T, Cohn K Harris, and Robert L Burgner. 1989. Ocean distribution and migration of steelhead (Oncorhynchus mykiss, formerly Salmo gairdneri). Document submitted to the International North Pacific Fisheries Commission. FRI-UW-8912. Seattle: FisheriesResearch Institute, University of Washington.
[11] James, G. D., and J. R. M. Kelso. 1995. Movements and habitat preference of adult rainbow trout (Oncorhynchus mykiss) in a New Zealand montane lake. New Zealand Journal of Marine and Freshwater Research 29: 493–503. https://doi.org/10.1080/00288330.1995.9516682.
[12] Del Real, S. Casey, Michelle Workman, and Joseph Merz. 2012. Migration characteristics of hatchery and natural-origin Oncorhynchus mykiss from the lower Mokelumne River, California. Environmental Biology of Fishes 94: 363–375. https://doi.org/10.1007/s10641-011-9967-z.
[13] Hayes, Sean A., Morgan H. Bond, Chad V. Hanson, Andrew W. Jones, Arnold J. Ammann, Jeffrey A. Harding, Alison L. Collins, Jeffrey Perez, and R. Bruce MacFarlane. 2011. Down, up, down and “smolting” twice? Seasonal movement patterns by juvenile steelhead (Oncorhynchus mykiss) in a coastal watershed with a bar closing estuary. Canadian Journal of Fisheries and Aquatic Sciences 68: 1341–1350. https://doi.org/10.1139/f2011-062.
[14] Berejikian, Barry A, E Paul Tezak, Thomas A Flagg, Anita L LaRae, Eric Kummerow, and Conrad VW Mahnken. 2000. Social dominance, growth, and habitat use of age-0 steelhead (Oncorhynchus mykiss) grown in enriched and conventional hatchery rearing environments. Canadian Journal of Fisheries and Aquatic Sciences 57: 628–636. https://doi.org/10.1139/f99-288.
[15] Bégout Anras, Marie-Laure, and Jean Paul Lagardère. 2004. Measuring cultured fish swimming behaviour: first results on rainbow trout using acoustic telemetry in tanks. Aquaculture 240: 175–186. https://doi.org/10.1016/j.aquaculture.2004.02.019.
[16] Gregory, T Ryan, and Chris M Wood. 1999. Interactions between individual feeding behaviour, growth, and swimming performance in juvenile rainbow trout (Oncorhynchus mykiss) fed different rations. Canadian Journal of Fisheries and Aquatic Sciences 56: 479–486. https://doi.org/10.1139/f98-186.
[17] Liao, James C. 2006. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. Journal of Experimental Biology 209: 4077–4090. https://doi.org/10.1242/jeb.02487.
[18] Boglione, Clara, Domitilla Pulcini, Michele Scardi, Elisa Palamara, Tommaso Russo, and Stefano Cataudella. 2014. Skeletal Anomaly Monitoring in Rainbow Trout (Oncorhynchus mykiss , Walbaum 1792) Reared under Different Conditions. PLOS ONE 9: e96983. https://doi.org/10.1371/journal.pone.0096983.
[19] Øverli, Øyvind, Charmaine A. Harris, and Svante Winberg. 1999. Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain, Behavior and Evolution 54: 263–275. https://doi.org/10.1159/000006627.
[20] Toobaie, Asra, and James W. A. Grant. 2013. Effect of food abundance on aggressiveness and territory size of juvenile rainbow trout, Oncorhynchus mykiss. Animal Behaviour 85: 241–246. https://doi.org/10.1016/j.anbehav.2012.10.032.
[21] Basic, D., S. Winberg, J. Schjolden, Å. Krogdahl, and E. Höglund. 2012. Context-dependent responses to novelty in Rainbow trout (Oncorhynchus mykiss), selected for high and low post-stress cortisol responsiveness. Physiology & Behavior 105: 1175–1181. https://doi.org/10.1016/j.physbeh.2011.12.021.
[22] Sneddon, Lynne U, Victoria A Braithwaite, and Michael J Gentle. 2003. Novel object test: examining nociception and fear in the rainbow trout. The Journal of Pain 4: 431–440. https://doi.org/10.1067/S1526-5900(03)00717-X.
[23] Yue, S, R. D Moccia, and I. J. H Duncan. 2004. Investigating fear in domestic rainbow trout, Oncorhynchus mykiss, using an avoidance learning task. Applied Animal Behaviour Science 87: 343–354. https://doi.org/10.1016/j.applanim.2004.01.004.
[24] Sneddon, L. U. 2003. The bold and the shy: individual differences in rainbow trout. Journal of Fish Biology 62: 971–975. https://doi.org/10.1046/j.1095-8649.2003.00084.x.
[25] Brown, Grant E., and R. Jan F. Smith. 1997. Conspecific skin extracts elicit antipredator responses in juvenile rainbow trout (Oncorhynchus mykiss). Canadian Journal of Zoology 75: 1916–1922. https://doi.org/10.1139/z97-821.
[26] Reilly, Siobhan C., John P. Quinn, Andrew R. Cossins, and Lynne U. Sneddon. 2008. Behavioural analysis of a nociceptive event in fish: Comparisons between three species demonstrate specific responses. Applied Animal Behaviour Science 114: 248–259. https://doi.org/10.1016/j.applanim.2008.01.016.
[27] Reviewed distribution maps for Rainbow trout (Oncorhynchus mykiss). 2016. Aquamaps.
[28] Alagona, Peter S., Scott D. Cooper, Mark Capelli, Matthew Stoecker, and Peggy H. Beedle. 2012. A History of Steelhead and Rainbow Trout (Oncorhynchus mykiss) in the Santa Ynez River Watershed, Santa Barbara County, California. Bulletin, Southern California Academy of Sciences 111: 163–222. https://doi.org/10.3160/0038-3872-111.3.163.
[29] Rowe, D. K. 1984. Factors affecting the foods and feeding patterns of lake‐dwelling rainbow trout (Salmo gairdnerii) in the North Island of New Zealand. New Zealand Journal of Marine and Freshwater Research 18: 129–141. https://doi.org/10.1080/00288330.1984.9516036.
[30] Kusabs, Ian A., and Stephen Swales. 1991. Diet and food resource partitioning in koaro, Galaxias brevipinnis (Günther), and juvenile rainbow trout, Oncorhynchus mykiss (Richardson), in two Taupo streams, New Zealand. New Zealand Journal of Marine and Freshwater Research 25: 317–325. https://doi.org/10.1080/00288330.1991.9516485.
[31] NOT FOUND
[32] Arndt, Ronney E., M. Douglas Routledge, Eric J. Wagner, and Roger F. Mellenthin. 2002. The use of AquaMats® to enhance growth and improve fin condition among raceway cultured rainbow trout Oncorhynchus mykiss (Walbaum). Aquaculture Research 33: 359–367. https://doi.org/10.1046/j.1365-2109.2002.00670.x.
[33] Shapovalov, Leo. 1937. Experiments in hatching steelhead eggs in gravel. California Fish and Game 23: 208–214.
[34] Becket, Kristen H, and Michael Barnes. 2015. Rearing with overhead cover influences rainbow trout behavior. Proceedings of the South Dakota Academy of Science 94: 187–193.
[35] Froese, R., and D. Pauly. 2014. FishBase. World Wide Web electronic publication. www.fishbase.org.
[36] FAO. 2014. The State of World Fisheries and Aquaculture 2014. Rome: Food and Agriculture Organization of the United Nations.
[37] Watson, R., Jackie Alder, and Daniel Pauly. 2006. Fisheries for forage fish, 1950 to the present. In On the Multiple Uses of Forage Fish: from Ecosystems to Markets, ed. Jackie Alder and Daniel Pauly, 14:1–20. Fisheries Centre Research Reports 3. Vancouver, Canada: Fisheries Centre, University of British Columbia.
[38] Mood, A. 2012. Average annual fish capture for species mostly used for fishmeal (2005-2009). fishcount.org.uk.
[39] Mood, A., and P. Brooke. 2012. Estimating the Number of Farmed Fish Killed in Global Aquaculture Each Year.
[40] Kopf, Von Kristin. 2012. Milliarden vs. Billionen: Große Zahlen. Sprachlog.
[41] Weisstein, Eric W. 2018. Milliard. Text. MathWorld - a Wolfram Web resource. http://mathworld.wolfram.com/Milliard.html. Accessed February 2.
[42] Klíma, Ondřej, Lukáš Kohút, Jan Mareš, and Radovan Kopp. 2018. The Effect of Feeding Frequency on the Fin Condition in Rainbow Trout (Oncorhynchus mykiss). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 66: 669–675. https://doi.org/10.11118/actaun201866030669.
[43] Karakatsouli, Nafsika, Sofronios E. Papoutsoglou, Georgios Panopoulos, Eustratios S. Papoutsoglou, Stella Chadio, and Dimitris Kalogiannis. 2008. Effects of light spectrum on growth and stress response of rainbow trout Oncorhynchus mykiss reared under recirculating system conditions. Aquacultural Engineering 38: 36–42. https://doi.org/10.1016/j.aquaeng.2007.10.006.
[44] Hunt, Darcie Elizabeth. 2015. The effect of visual capacity and swimming ability of fish on the performance of light-based bycatch reduction devices in prawn trawls. Doctoral dissertation, University of Tasmania.
[45] Ruggerone, G., and T. P. Quinn. 1989. Unpublished data.
[46] Hawkins, Denise K, and Chris J Foote. 1998. Early survival and development of coastal cutthroat trout (Oncorhynchus clarki clarki), steelhead (Oncorhynchus mykiss), and reciprocal hybrids. Canadian Journal of Fisheries and Aquatic Sciences 55: 2097–2104. https://doi.org/10.1139/f98-099.
[47] Wysocki, Lidia Eva, John W. Davidson, Michael E. Smith, Adam S. Frankel, William T. Ellison, Patricia M. Mazik, Arthur N. Popper, and Julie Bebak. 2007. Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss. Aquaculture 272: 687–697. https://doi.org/10.1016/j.aquaculture.2007.07.225.
[48] Pawson, M.G., and G.D. Pickett. 1996. The Annual Pattern of Condition and Maturity in Bass, Dicentrarchus Labrax, in Waters Around England and Wales. Journal of the Marine Biological Association of the United Kingdom 76: 107. https://doi.org/10.1017/S0025315400029040.
[49] NOT FOUND
[50] Kestin, S. C., S. B. Wotton, and N. G. Gregory. 1991. Effect of slaughter by removal from water on visual evoked activity in the brain and reflex movement of rainbow trout (Oncorhynchus mykiss). The Veterinary Record 128: 443–446.
[51] Luchiari, A. C., and J. Pirhonen. 2008. Effects of ambient colour on colour preference and growth of juvenile rainbow trout Oncorhynchus mykiss (Walbaum). Journal of Fish Biology 72: 1504–1514. https://doi.org/10.1111/j.1095-8649.2008.01824.x.
[52] Bosakowski, Thomas, and Eric J. Wagner. 1994. Assessment of Fin Erosion by Comparison of Relative Fin Length in Hatchery and Wild Trout in Utah. Canadian Journal of Fisheries and Aquatic Sciences 51: 636–641. https://doi.org/10.1139/f94-064.
[53] Needham, P. R., and Alan C. Taft. 1934. Observations on the spawning of steelhead trout. Transactions of the American Fisheries Society 64: 332–338.
[54] Hawryshyn, Craig W., and Ferenc I. Hárosi. 1994. Spectral characteristics of visual pigments in rainbow trout (Oncorhynchus mykiss). Vision Research 34. The Biology of Ultraviolet Reception: 1385–1392. https://doi.org/10.1016/0042-6989(94)90137-6.
[55] Brown, Culum. 2015. Fish intelligence, sentience and ethics. Animal Cognition 18: 1–17. https://doi.org/10.1007/s10071-014-0761-0.
[56] Amundsen, Lasse, and Martin Landro. 2011. Marine seismic sources part VIII: Fish hear a great deal. Recent Advances in Technology 8: 1–5.
[57] Ashley, Paul J., Lynne U. Sneddon, and Catherine R. McCrohan. 2007. Nociception in fish: stimulus–response properties of receptors on the head of trout Oncorhynchus mykiss. Brain Research 1166: 47–54. https://doi.org/10.1016/j.brainres.2007.07.011.
[58] North, B. P., J. F. Turnbull, T. Ellis, M. J. Porter, H. Migaud, J. Bron, and N. R. Bromage. 2006. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255: 466–479. https://doi.org/10.1016/j.aquaculture.2006.01.004.
[59] Pickering, A. D., T. G. Pottinger, J. P. Sumpter, J. F. Carragher, and P. Y. Le Bail. 1991. Effects of acute and chronic stress on the levels of circulating growth hormone in the rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology 83: 86–93. https://doi.org/10.1016/0016-6480(91)90108-I.
[60] Réale, Denis, Simon M. Reader, Daniel Sol, Peter T. McDougall, and Niels J. Dingemanse. 2007. Integrating animal temperament within ecology and evolution. Biological Reviews 82: 291–318. https://doi.org/10.1111/j.1469-185X.2007.00010.x.
[61] Tacchi, Luca, Liam Lowrey, Rami Musharrafieh, Kyle Crossey, Erin T. Larragoite, and Irene Salinas. 2015. Effects of transportation stress and addition of salt to transport water on the skin mucosal homeostasis of rainbow trout (Oncorhynchus mykiss). Aquaculture 435: 120–127. https://doi.org/10.1016/j.aquaculture.2014.09.027.
[62] Robb, D H F, and S C Kestin. 2002. Methods Used to Kill Fish: Field Observations and Literature Reviewed. Animal Welfare 11: 269–282.
[63] Lines, J. A., D. H. Robb, S. C. Kestin, S. C. Crook, and T. Benson. 2003. Electric stunning: a humane slaughter method for trout. Aquacultural Engineering 28: 141–154. https://doi.org/10.1016/S0144-8609(03)00021-9.
[64] Robb, D. H. F, M O’ Callaghan, J. A Lines, and S. C Kestin. 2002. Electrical stunning of rainbow trout (Oncorhynchus mykiss): factors that affect stun duration. Aquaculture 205: 359–371. https://doi.org/10.1016/S0044-8486(01)00677-9.
[65] Concollato, Anna, Rolf Erik Olsen, Sheyla Cristina Vargas, Antonio Bonelli, Marco Cullere, and Giuliana Parisi. 2016. Effects of stunning/slaughtering methods in rainbow trout (Oncorhynchus mykiss) from death until rigor mortis resolution. Aquaculture 464: 74–79. https://doi.org/10.1016/j.aquaculture.2016.06.009.